Roughness in Lattice Ordered Effect Algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roughness in Lattice Ordered Effect Algebras

Many authors have studied roughness on various algebraic systems. In this paper, we consider a lattice ordered effect algebra and discuss its roughness in this context. Moreover, we introduce the notions of the interior and the closure of a subset and give some of their properties in effect algebras. Finally, we use a Riesz ideal induced congruence and define a function e(a, b) in a lattice ord...

متن کامل

Finite homogeneous and lattice ordered effect algebras

Effect algebras (or D-posets) have recently been introduced by Foulis and Bennett in [1] for study of foundations of quantum mechanics. (See also [2], [3].) The prototype effect algebra is (E(H),⊕, 0, I), where H is a Hilbert space and E(H) consists of all self-adjoint operators A of H such that 0 ≤ A ≤ I. For A,B ∈ E(H), A⊕B is defined iff A+B ≤ 1 and then A⊕B = A+B. E(H) plays an important ro...

متن کامل

Semi-linear Varieties of Lattice-Ordered Algebras

We consider varieties of pointed lattice-ordered algebras satisfying a restricted distributivity condition and admitting a very weak implication. Examples of these varieties are ubiquitous in algebraic logic: integral or distributive residuated lattices; their {·}-free subreducts; their expansions (hence, in particular, Boolean algebras with operators and modal algebras); and varieties arising ...

متن کامل

Lattice uniformities on effect algebras

Let L be a lattice ordered effect algebra. We prove that the lattice uniformities on L which make uniformly continuous the operations ⊖ and ⊕ of L are uniquely determined by their system of neighbourhoods of 0 and form a distributive lattice. Moreover we prove that every such uniformity is generated by a family of weakly subadditive [0,+∞]-valued functions on L.

متن کامل

A Proof of Weinberg’s Conjecture on Lattice-ordered Matrix Algebras

Let F be a subfield of the field of real numbers and let Fn (n ≥ 2) be the n× n matrix algebra over F. It is shown that if Fn is a lattice-ordered algebra over F in which the identity matrix 1 is positive, then Fn is isomorphic to the lattice-ordered algebra Fn with the usual lattice order. In particular, Weinberg’s conjecture is true. Let L be a totally ordered field, and let Ln (n ≥ 2) be the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Scientific World Journal

سال: 2014

ISSN: 2356-6140,1537-744X

DOI: 10.1155/2014/542846